TensorFlow2.1入门学习笔记(10)——使用keras搭建神经网络(Mnist,Fashion)

前面已经使用TensorFlow2的原生代码搭建神经网络,接下来将使用keras搭建神经网络,并改写鸢尾花分类问题的代码,将原本100多行的代码用不到20行代码实现。

  1. import,相关模块
  2. train, test,指定训练集的输入特征,和训练集的标签
  3. model = tf.keras.models.Sequential,搭建网络结构,(顺序神经网络)
  4. model.compile,配置训练方法
  5. model.fit,执行训练
  6. model.summary,打印出网络结构和参数统计

描述各层网络:

  • 拉直层:tf.keras.layers.Flatten(),将输入特征拉直

  • 全连接层:tf.keras.layers.Dense(神经元个数,activation=“激活函数”,kernel_regularizer=哪种正则化)

    activation(字符串给出)可选: relu、 softmax、 sigmoid 、 tanh

    kernel_regularizer可选: tf.keras.regularizers.l1()、tf.keras.regularizers.l2()

  • 卷积层: tf.keras.layers.Conv2D(filters = 卷积核个数, kernel_size = 卷积核尺寸, strides = 卷积步长, padding = " valid" or “same”)

  • LSTM层: tf.keras.layers.LSTM()

  • Optimizer可选: ‘sgd’ or tf.keras.optimizers.SGD (lr=学习率,momentum=动量参数)

    ‘adagrad’ or tf.keras.optimizers.Adagrad (lr=学习率)

    ‘adadelta’ or tf.keras.optimizers.Adadelta (lr=学习率)

    ‘adam’ or tf.keras.optimizers.Adam (lr=学习率, beta_1=0.9, beta_2=0.999)

  • loss可选: ‘mse’ or tf.keras.losses.MeanSquaredError()

    ‘sparse_categorical_crossentropy’ or tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)

  • Metrics可选: ‘accuracy’ :y_和y都是数值,如y_=[1] y=[1]

    ‘categorical_accuracy’ :y_和y都是独热码(概率分布),如y_=[0,1,0] y=[0.256,0.695,0.048]

    ‘sparse_categorical_accuracy’ :y_是数值,y是独热码(概率分布),如y_=[1] y=[0.256,0.695,0.048]

model.fit (训练集的输入特征, 训练集的标签, batch_size= , epochs= , validation_data=(测试集的输入特征,测试集的标签), validation_split=从训练集划分多少比例给测试集, validation_freq = 多少次epoch测试一次)

打印网络的结构和参数统计

  • 例如鸢尾花分类问题

python

# 1.import
import tensorflow as tf
from sklearn import datasets
import numpy as np

# train,test
x_train = datasets.load_iris().data
y_train = datasets.load_iris().target

np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)

# 3.model.Sequential
model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
])

# 4.model.compile
model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

# 5.model.fit
model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)

# 6.model.summary
model.summary()
  1. import,相关模块
  2. train, test,指定训练集的输入特征,和训练集的标签
  3. class MyModel(Model) model=MyModel,(Sequential无法写出带有跳连的非顺序神经网络)
  4. model.compile,配置训练方法
  5. model.fit,执行训练
  6. model.summary,打印出网络结构和参数统计
  • _init_( ) 定义所需网络结构块

  • call( ) 写出前向传播

python

###############################
class MyModel(Model):
	def __init__(self):
		super(MyModel, self).__init__()
		定义网络结构块
	def call(self, x):
		调用网络结构块实现前向传播
		return y
model = MyModel()
###############################

class IrisModel(Model):
	def __init__(self):
		super(IrisModel, self).__init__()
		self.d1 = Dense(3)
	def call(self, x):
		y = self.d1(x)
		return y
model = IrisModel()
  • 鸢尾花问题使用六步法复现

python

# 1.import
import tensorflow as tf
from sklearn import datasets
######
from tensorflow.keras.layers import Dense
from tensorflow.keras import Model
######
import numpy as np

# train,test
x_train = datasets.load_iris().data
y_train = datasets.load_iris().target

np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)

###### 3.class MyModel ######
class IrisModel(Model):
    def __init__(self):
        super(IrisModel, self).__init__()
        self.d1 = Dense(3, activation='sigmoid', kernel_regularizer=tf.keras.regularizers.l2())

    def call(self, x):
        y = self.d1(x)
        return y
model = IrisModel()

# 4.model.compile
model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

# 5.model.fit
model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)

# 6.model.summary
model.summary()

打印结果:

  • Yann LeCun

  • 提供 6万张 28*28 像素点的0~9手写数字图片和标签,用于训练。

  • 提供 1万张 28*28 像素点的0~9手写数字图片和标签,用于测试。

  • 导入MNIST数据集:

python

mnist = tf.keras.datasets.mnist
(x_train, y_train) , (x_test, y_test) = mnist.load_data()
  • 数据处理 作为输入特征,输入神经网络时,将数据拉伸为一维数组: tf.keras.layers.Flatten( ) [0 0 0 48 238 252 252 …… …… …… 253 186 12 0 0 0 0 0]

  • 查看数据集

python

plt.imshow(x_train[0], cmap='gray')#绘制灰度图
plt.show()

python

print("x_train[0]:\n", x_train[0])

python

print("y_train[0]:", y_train[0])

python

# 打印出整个训练集输入特征形状
print("x_train.shape:\n", x_train.shape)
# 打印出整个训练集标签的形状
print("y_train.shape:\n", y_train.shape)
# 打印出整个测试集输入特征的形状
print("x_test.shape:\n", x_test.shape)
# 打印出整个测试集标签的形状
print("y_test.shape:\n", y_test.shape)

python

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()

python

import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras import Model

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0


class MnistModel(Model):
    def __init__(self):
        super(MnistModel, self).__init__()
        self.flatten = Flatten()
        self.d1 = Dense(128, activation='relu')
        self.d2 = Dense(10, activation='softmax')

    def call(self, x):
        x = self.flatten(x)
        x = self.d1(x)
        y = self.d2(x)
        return y


model = MnistModel()

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()

更多分享:

  • 提供 6万张 28*28 像素点的衣裤等图片和标签,用于训练。
  • 提供 1万张 28*28 像素点的衣裤等图片和标签,用于测试。

  • 导入数据集

python

fashion = tf.keras.datasets.fashion_mnist
(x_train, y_train),(x_test, y_test) = fashion.load_data()

python

import tensorflow as tf

fashion = tf.keras.datasets.fashion_mnist
(x_train, y_train),(x_test, y_test) = fashion.load_data()
x_train, x_test = x_train/255.0, x_test/255.0

model=tf.keras.models.Sequential([
	tf.keras.layers.Flatten(),
	tf.keras.layers.Dense(128,activation="relu"),
	tf.keras.layers.Dense(10,activation="softmax")
])

model.compile(optimizer="adam",
				loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = False),
				metrics = ['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test,y_test), validation_freq=1)

model.summary()

python

import tensorflow as tf
from tensorflow.keras.layers import Dense,Flatten
from tensorflow.keras import Model

fashion=tf.keras.datasets.fashion_mnist
(x_train,y_train),(x_test, y_test)=fashion.load_data()
x_train, x_test=x_train/255.0,x_test/255.0

class FashionModel(Model):
	def __init__(self):
		super(FashionModel, self).__init__()
		self.flatten=Flatten()
		self.d1=Dense(128,activation="relu")
		self.d2=Dense(10,activation="softmax")
	
	def call(self,x):
		x=self.flatten(x)
		x=self.d1(x)
		y=self.d2(x)
		return y

model = FashionModel()

model.compile(optimizer="adam",
				loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
				metrics=["sparse_categorical_accuracy"])
model.fit(x_train,y_train,batch_size=32,epochs=5,validation_data=(x_test,y_test),validation_freq=1)
model.summary()


  • Author: Yasin
  • Link: https://wyxogo.top/tf_keras_mnist/
  • Copyright: This article is adopted , if reprint please indicate from
  • Related Content