TensorFlow2.1入门学习笔记(5)——构建第一个神经网络,鸢尾花分类问题(附源码)
根据前面的基础知识,可以开始第一个神经网络的搭建,主要学习的资料西安科技大学:神经网络与深度学习——TensorFlow2.0实战,北京大学:人工智能实践Tensorflow笔记
0.1 1.问题背景
0.1.1 问题描述
人们通过经验总结出的规律:通过测量鸢尾花的花萼长、花萼宽、花瓣长、花瓣宽,可以得出鸢尾花的类别。(如:花萼长>花萼宽 且 花瓣长/花瓣宽>2 则为杂色鸢尾花)。大量依靠人工分类工作量巨大,不同的人员分类,标准,准确率都会有所差距。可以借助深度学习来学习其中的特征并对新数据进行预测。
0.1.2 流程设计
- 大量的[花萼长、花萼宽、花瓣长、花瓣宽(输入特征),对应的类别(标签)]数据对构成数据集
- 把数据集喂入搭建好的神经网络结构
- 网络优化参数得到模型
- 模型读入新输入特征,输出识别结果
0.1.3 模型设计
0.1.3.0.1 搭建网络模型
0.1.3.0.2 转换为数学模型
所有输入特征x与相应特征权重w相乘加上偏置项b输出结果y。 x:一行四列矩阵,对应四个特征 w:四行三列矩阵 b:3个偏置项 y:一行三列矩阵,对应三种类别的可信度
0.1.3.0.3 搭建网络
每个神经元$y_0,y_1,y_2与输入节点x_0,x_1,x_2,x_3$都有联系,称为全连接神经网络权重w与偏置项b会随机初始化一组参数
0.1.3.0.4 前向传播
神经网络执行y = x * w + b的过程称为前向传播
0.1.3.0.5 损失函数
损失函数:预测值(y)与标准答案($y_i$)的差距,可以定量判断w,b的优劣,当损失函数输出最小时会出现最优解。(有多种损失函数,这里用均方误差)
- 均方误差:$MSE(y,y_i)=\frac{\sum_{k=0}^n(y-y_i)^2}{n}$
0.1.3.0.6 梯度下降
目的:找到一组参数w和b,使得损失函数最小。 梯度:函数对个参数求偏导后的向量,梯度下降的方向是函数减小的方向。 梯度下降:延损失函数梯度下降的方向,寻找损失函数的最小值,得到最优参数。 学习率(learning rate, lr):当学习率设置过小时,收敛过程将变得十分缓慢。当学习率设置过大时,梯度可能会在最小值附近震荡,甚至无法收敛
0.1.3.0.7 反向传播
$w_{t+1}=w_t-lr*\frac{\partial loss}{\partial w_t}$ 从前向后,逐层求损失函数对每层神经元参数的偏导数,迭代更新所有参数。
0.2 2.数据读入
0.2.1 数据集介绍:
该数据集已集成在sklearn包中,可直接调入使用,数据共有150组,每组包括花萼长、花萼宽、花瓣长、花瓣宽共四个输入特征。同时给出了这一组特征的的对应鸢尾花类别。类别包括Setosa Iris(狗尾草鸢尾),Versicolour Iris(杂色鸢尾),Viginaica Iris(弗吉尼亚鸢尾)三类,分别用数字0,1,2表示
- 从sklearn包datasets读入数据集
from sklearn.datasets import load_iris
x_data = datasets.load_iris().data #读入iris数据集的所有输入特征
y_data = datasets.load_iris().target #读入iris数据集所有标签
0.2.2 数据预处理
- 数据集乱序:随机打乱数据
# seed: 随机数种子,是一个整数,当设置之后,每次生征和标签一一对应
np.random.seed(116)
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)
- 将数据集分成训练集和测试集
# 训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]
- 输入特征和标签值一一对应,把数据集分批次,每个批次batch(32)组数据
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
0.2.3 数据训练
- 定义神经网络中所有参数可训练
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))
- 嵌套循环迭代,with结构更新参数,显示当前loss
for epoch in range(epoch): # 数据集级别迭代
for step, (x_train, y_train) in enumerate(train_db): # batch级别的迭代
with tf.GradientTape() as tape: # 记录梯度信息
# 前向传播过程计算y
# 计算总loss
grads = tape.gradient(loss, [w1, b1]) # 求导
w1.assign_sub(lr * grads[0]) # 参数w1自更新
b1.assign_sub(lr * grads[1]) # 参数b自更新
# 每个epoch,打印loss信息
print("Epoch {}, loss: {}".format(epoch, loss_all/4))
- 计算当前参数前向传播后的准确率,显示当前acc(accuracy)
for x_test, y_test in test_db:
y = tf.matmul(x_test, w1) + b1 # y为预测结果
y = tf.nn.softmax(y) # y符合概率分布
pred = tf.argmax(y, axis=1) # 返回y中最大值的索引,即预测的分类
pred = tf.cast(pred, dtype=y_test.dtype) # 调整参数类型与标签一致
correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
correct = tf.reduce_sum(correct) # 将所有batch中的correct数加起来
total_correct += int(correct) # 将所有batch中的correct数加起来
total_number += x_test.shape[0]
acc = total_correct / total_number
test_acc.append(acc)
print("Test_acc:", acc)
0.2.4 数据可视化
- loss可视化
plt.title('Loss Function Curve') # 图片标题
plt.xlabel('Epoch') # x轴变量名称
plt.ylabel('Loss') # y轴变量名称
plt.plot(train_loss_results, label="$Loss$") # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend() # 画出曲线图标
plt.show() # 画出图像
- acc可视化
plt.title('Acc Curve') # 图片标题
plt.xlabel('Epoch') # x轴变量名称
plt.ylabel('Acc') # y轴变量名称
plt.plot(test_acc, label="$Accuracy$") # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()
0.3 3.完整源码
# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np
# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target
# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会成的随机数都一样
np.random.seed(116) # 使用相同的seed,保证输入特影响准确率
# seed: 随机数种子,是一个整数,当设置之后,每次生征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)
# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]
# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)
# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))
lr = 0.1 # 学习率为0.1
train_loss_results = [] # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = [] # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500 # 循环500轮
loss_all = 0 # 每轮分4个step,loss_all记录四个step生成的4个loss的和
# 训练部分
for epoch in range(epoch): #数据集级别的循环,每个epoch循环一次数据集
for step, (x_train, y_train) in enumerate(train_db): #batch级别的循环 ,每个step循环一个batch
with tf.GradientTape() as tape: # with结构记录梯度信息
y = tf.matmul(x_train, w1) + b1 # 神经网络乘加运算
y = tf.nn.softmax(y) # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
y_ = tf.one_hot(y_train, depth=3) # 将标签值转换为独热码格式,方便计算loss和accuracy
loss = tf.reduce_mean(tf.square(y_ - y)) # 采用均方误差损失函数mse = mean(sum(y-out)^2)
loss_all += loss.numpy() # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
# 计算loss对各个参数的梯度
grads = tape.gradient(loss, [w1, b1])
# 实现梯度更新 w1 = w1 - lr * w1_grad b = b - lr * b_grad
w1.assign_sub(lr * grads[0]) # 参数w1自更新
b1.assign_sub(lr * grads[1]) # 参数b自更新
# 每个epoch,打印loss信息
print("Epoch {}, loss: {}".format(epoch, loss_all/4))
train_loss_results.append(loss_all / 4) # 将4个step的loss求平均记录在此变量中
loss_all = 0 # loss_all归零,为记录下一个epoch的loss做准备
# 测试部分
# total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
total_correct, total_number = 0, 0
for x_test, y_test in test_db:
# 使用更新后的参数进行预测
y = tf.matmul(x_test, w1) + b1
y = tf.nn.softmax(y)
pred = tf.argmax(y, axis=1) # 返回y中最大值的索引,即预测的分类
# 将pred转换为y_test的数据类型
pred = tf.cast(pred, dtype=y_test.dtype)
# 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
# 将每个batch的correct数加起来
correct = tf.reduce_sum(correct)
# 将所有batch中的correct数加起来
total_correct += int(correct)
# total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
total_number += x_test.shape[0]
# 总的准确率等于total_correct/total_number
acc = total_correct / total_number
test_acc.append(acc)
print("Test_acc:", acc)
print("--------------------------")
# 绘制 loss 曲线
plt.title('Loss Function Curve') # 图片标题
plt.xlabel('Epoch') # x轴变量名称
plt.ylabel('Loss') # y轴变量名称
plt.plot(train_loss_results, label="$Loss$") # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend() # 画出曲线图标
plt.show() # 画出图像
# 绘制 Accuracy 曲线
plt.title('Acc Curve') # 图片标题
plt.xlabel('Epoch') # x轴变量名称
plt.ylabel('Acc') # y轴变量名称
plt.plot(test_acc, label="$Accuracy$") # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()